

Integrationsregeln

– Mathe Erklärungen und Aufgaben

von lakschool.com

Alle Erklärungen

+ Aufgaben mit ausführlichem Lösungsweg

Inhalt

irklärungenirklärungen	. 3
Konstanten, Potenz- und Faktorregel	. 4
Summenregel und Differenzregel	
Brüche und Wurzeln integrieren	. 7
Partielle Integration	. 9
Lineare Substitutionsregel	11
Integration durch Substitution	
Aufgaben	
Grundlagen	
Einfache Integrationsregeln	
Partielle Integration	
Lineare Substitutionsregel	
Integration durch Substitution	
.ösungen	
Grundlagen	
Einfache Integrationsregeln	
Partielle Integration	
Lineare Substitutionsregel	
Integration durch Substitution	

Signature Integrationsregeln Erklärungen

Konstanten, Potenz- und Faktorregel

Tipp

Vergiss nicht bei unbestimmten Integralen spätestens am Ende noch die Integrationskonstante C zu setzen.

Konstantenregel

Wenn im Integral nur eine Konstante *k* steht, dann ist das Integral:

$$\int k \, \mathrm{d}x = kx + C$$

BEISPIELE

- $\int 2 dx = 2x + C$ $\int 5 dx = 5x + C$

Potenzregel

Das Integral von Potenzen in der Form x^n ist:

$$\int x^n \,\mathrm{d}x = rac{1}{n+1}x^{n+1} + C$$

Beachte

n darf jede beliebige reelle Zahlaußer -1 sein, denn sonst würde man durch 0 dividieren.

$$n \in \mathbb{R} ackslash \{-1\}$$

BEISPIELE

- $\int x^3 dx = \frac{1}{3+1}x^{3+1} = \frac{1}{4}x^4 + C$
- $\int x^{-2} dx = \frac{1}{-2+1} x^{-2+1} = -x^{-1} + C$

Faktorregel

Ein konstanter Faktor kann vor das Integralzeichen gezogen werden.

$$\int a \cdot g(x) \, \mathrm{d}x = a \cdot \int g(x) \, \mathrm{d}x$$

BEISPIELE

Hier wird die Potenzregel und die Faktorregel angewendet:

•
$$\int 4x^3 dx = 4 \cdot \int x^3 dx = 4 \cdot \frac{1}{3+1}x^{3+1} = x^4 + C$$

•
$$\int -3x \, dx = -3 \cdot \int x^1 \, dx = -3 \cdot \frac{1}{1+1} x^{1+1} = -\frac{3}{2} x^2 + C$$

Beachte

Es ist immer wichtig zu beachten, nach welcher Variable integriert wird.

Beispiel:

$$\int 3 \, \mathbf{d} \mathbf{y} = 3 \mathbf{y} + C$$

Significant in the second of the second o

Grundlagen

Einfache Integrationsregeln

Aufgabenstellung: Löse das Integral.

a.
$$\int 5x^4 dx$$

b.
$$\int 3x^2 + 8x \, dx$$

c. $\int -\frac{3}{x^4} \, dx$

c.
$$\int -\frac{3}{x^4} \, \mathrm{d}x$$

Partielle Integration

Aufgabenstellung: Löse das Integral mit partieller Integration.

$$\int x \cdot e^x \, \mathrm{d}x$$

Lineare Substitutionsregel

Aufgabenstellung: Löse das Integral mit der linearen Substitutionsregel.

$$\int \cos(2x-18)\,\mathrm{d}x$$

Integration durch Substitution

Aufgabenstellung: Löse das Integral durch Substitution.

$$\int rac{x}{\sqrt{x^2-2}}\,\mathrm{d}x$$

